Measurements of Nuclear Heating Rate and Neutron Flux in HANARO CN Hole for Designing the Moderator Cell of Cold Neutron Source

Myong-Seop KIM, Sung-Yul HWANG, Hoan-Sung JUNG

and Kye-Hong LEE

Korea Atomic Energy Research Institute

Introduction-1

- Design of cold neutron source facility in HANARO : now in progress.
- Heat removal capacity of moderator cell: essential information for source design.
- □ Determination of nuclear heating rate at CN hole of HANARO.

Determination of the capacity of refrigerator.

Introduction-2

- Nuclear heating: nearly all the energy absorbed in a material placed in the radiation field of a research reactor appears in the form of heat.
- □ Nuclear heating in research reactors: interactions with gamma-rays, fast neutrons and thermal neutrons.
- Determination of nuclear heating rate by calorimetric dosimeter (calorimetry): advantages for high-dose applications.
- ☐ In this research,
 - Designing and constructing a calorimeter,
 - Measuring the nuclear heating rate at CN hole of HANARO with it,
 - Measuring the thermal neutron flux at CN hole.

Concept of calorimeter operation

In equilibrium condition of steady state, the power integrated over the volume of the sample,

$$P = hs(T_s - T_e)$$

 $T_{\scriptscriptstyle S}$, $T_{\scriptscriptstyle e}$: sample and container temperatures,

h: heat transfer coefficient,

S: sample surface area,

 $1/h_S$: thermal resistance.

☐ If thermal resistance is known, the nuclear heating rate can be obtained by measuring the temperature difference in the steady state.

Experimental setup

- □ Applicable for heating rate measurements in another vertical irradiation holes of HANARO.
- Components
 - a calorimeter sensor,
 - an air containing aluminum sleeve for fitting the sensor to the CN hole,
 - aluminum weight,
 - a lead wire assembly.

Sensor part of calorimeter

Calibration experiments

- Installation of facility at CN hole of HANARO (zero reactor power).
- ☐ Measurements of sample and container temperatures with the electric power supplied to the heater loaded in the sample.
- $lue{}$ The maximum sample temperature : 385 $^{\circ}$ C at 20 W.
- ☐ The change of container temperature : several °C.

- whole trends of the temperature changes in the calibration experiment.
- Temperature change : exponential growth function.

Calibration curve

- Relationship between the power supplied to the heater and the temperature difference : not linear.
- Convective and radiative heat transfers are increased in high sample temperature range.

Measurements of nuclear heating rate and neutron flux

■ Measurements of nuclear heating rates at the CN hole at three reactor powers of 1, 4 and 8 MW.

- Cobalt wire irradiations at the reactor powers of 1 and 8 MW for the neutron flux measurements.
- Measurements of the activities of the withdrawn cobalt samples: HPGe detector system.
- The diameter of the cobalt wire: 0.05 mm (negligible self-shielding effect).

Measured nuclear heating rates-1

Reactor power [MW]	Container temperature [°C]	Sample temperature [°C]	Temperature difference [°C]	Nuclear heating rate at sample [W]	Heating rate per sample unit mass [W/g]
1.18	31.167	63.284	32.118	0.697	0.018±0.0007
4.20	37.051	122.592	85.540	3.000	0.076±0.0023
8.48	40.158	177.220	137.062	5.618	0.143±0.0041
29.30 (30 MW _{th})				19.411	0.494

Measured nuclear heating rates-2

Measured neutron flux

Reactor power [MW]	Co-wire weight [mg]	Irradiation time [sec]	Saturated activity per nuclei [Bq]	Neutron flux [n/cm²sec]
1.18	0.252	1800	1.224×10 ¹⁰	3.294 ×10 ¹²
8.48	0.395	600	8.602 ×10 ¹⁰	2.314 ×10 ¹³
29.30 (30 MW _{th})				7.450 ×10 ¹³

